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A B S T R A C T

Epidemiologic information, including animal characteristics (e.g., observable risk factors

or clinical signs) predisposing to animal disease, is frequently used for design of targeted

surveillance systems, but this information is infrequently used for population inference. In

this study, we report the evaluation of use of epidemiologic information for population

inference in targeted surveillance in three animal disease scenarios. We adapted sampling

theory using Monte Carlo methods to determine target population sample size to detect

disease with 95% confidence, using information from the epidemiologic parameters risk

ratio and fraction of the population with the characteristic. These parameters and their

uncertainties were derived from a reference population. The next step was to use a second

(sampled) population to evaluate effects of sampling the targeted population. The focus of

the study was on estimation of prevalence. Our results showed that if one is less certain of

the epidemiologic parameters, a rational decision is to model the input parameter

distributions reflecting this uncertainty, thereby increasing the sample size above the

minimum needed for the detection of the disease with a known confidence. Targeted

surveillance is appropriate for prevalence estimation when one has representative and

justifiable estimates of key epidemiologic parameters.
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1. Introduction

Targeted sampling is emerging as an important concept
in animal health surveillance. Classically, one type of
targeted surveillance has been visual observation of
animals within herds with specific clinical signs of disease.
This form of targeted surveillance has been used histori-
cally in veterinary medicine for case finding and has
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proven critical for detection and eradication of important
diseases including foot and mouth disease, contagious
pleuropneumonia, and others. The past 5 years, however,
have seen a substantial effort by many countries to
incorporate targeted sampling concepts into eradication
programs for endemic diseases and for demonstrating
freedom from disease (e.g., Stärk et al., 2006). The US
Bovine Spongiform Encephalopathy (BSE) Surveillance
Program has used targeted surveillance (BSurvE) to
enhance the likelihood of detection of BSE in cattle with
clinical signs of disease or other abnormal presentations
(USDA-APHIS-VS, 2006). In this surveillance system, a
complex model involving age and categories for exiting the
population was used to derive point values for each
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sampling stratum (Prattley et al., 2007). Recently, the
Bovine Tuberculosis Surveillance Program in Minnesota
has focused sampling on cattle herds with suspected risk
factors for infected herd status, including history of cattle
introductions from the southwest US or exposure to roping
steers and proximity to known infected herds (Minnesota
Board of Animal Health, 2006). Similarly, the US Scrapie
Surveillance Program focuses sampling on black-faced
adult sheep due to the increased risk of infection among
this targeted group (USDA-APHIS-VS, 2004). Much of the
targeted surveillance work to date has been geared
towards specific disease applications. The result of these
efforts is a collection of analytic approaches that tend to be
application specific and usually not used for population
inference.

The general concept of targeted sampling is to choose
samples from the population with probabilities based on a
characteristic, defined as an easily observed clinical sign or
other diagnostic factor. In these applications, the presence
of the characteristic indicates an increased probability for
the presence of disease. Thus, targeted sampling is a form
of unequal probability sampling. Targeted sampling is
attractive for surveillance because unequal probability
sampling often results in a substantial reduction in the
required sample size through focusing on a subpopulation
with higher disease prevalence. Targeted surveillance
therefore can improve the economic efficiency of surveil-
lance compared to simple random sampling.

Results from targeted sampling appear to have been
derived without considering the connections between
targeted sampling and standard finite population sampling
theory. For example, results from targeted surveillance
have been used predominantly for disease detection and
not for prevalence estimation of animal disease. One factor
that has led epidemiologists to this departure is the cost
and difficulty of constructing a sampling frame. Another
factor is that sample collection tends to be opportunistic,
which leads to inference based on an assumed model,
rather than the sample design (Särndal, 1978). While there
is nothing inherently wrong with opportunistic sampling
and model-based inference, there is little acknowledge-
ment of the connections between traditional sampling
theory and targeted sampling. Therefore, there is rarely an
appreciation of the potential application of standard
survey sampling theory to targeted sampling based on
an epidemiologic model.

A mathematical theory for targeted sampling has been
previously described (Williams et al., 2009). The funda-
mental principle of targeted surveillance is to focus
sampling on one or more subpopulations with higher
prevalence. This sampling focus allows use of a smaller
sample size for surveillance. A characteristic (e.g., an
observable risk factor or clinical sign) divides the popula-
tion. To estimate the sample size required for detection
using a risk-based system, a relative value, or points, is
associated with each subpopulation (Cannon, 2002;
Prattley et al., 2007). An animal randomly selected from
the general population has a point value of 1; the elevated
point value for the subpopulation of interest reflects the
increased likelihood that samples from this subpopulation
will be from infected/diseased individuals. The mathe-
matics for targeted sampling is based on the risk ratio of
the characteristic, the fraction of the population with the
characteristic, and a population or design prevalence.
Knowledge of these three parameters is sufficient to
design, implement, and analyze data from a targeted
surveillance application. Nevertheless, practical concerns
about targeted surveillance stem from uncertainties
surrounding risk ratio estimation, as well as estimates of
the fraction of the population with the characteristics.
These uncertainties include those defined by statistical
methods as well as the uncertainties surrounding the
validity of measurements from the reference population
(in space and time) as it relates to the population to be
sampled.

The objective of this study was to evaluate the
performance of targeted sampling in specific examples
of animal disease surveillance. This work is built on theory
previously developed (Williams et al., 2009) by applying
those methods to real world situations. One outcome of
this study was a transparent description of the necessary
steps for designing and analyzing data from a targeted
surveillance application. This outcome should support
future surveillance efforts. Better understanding of tar-
geted surveillance will improve national capabilities
related to monitoring and surveillance of economically
important disease conditions in livestock.

2. Methods

2.1. Study design

A targeted subpopulation is defined as a segment of the
population with higher disease prevalence than the
general population and exhibiting a specific characteristic.
In this paper we demonstrate the design and analysis of
targeted sampling for three animal disease scenarios.
These scenarios were chosen because each differs with
respect to the validity of risk ratio and population fraction
when applied to the sampled population (i.e., these
parameters are progressively less representative of the
populations that are sampled). In each case, data on the
prevalence of disease, risk ratio of a characteristic
predisposing to disease, and the prevalence of this
characteristic were derived from a reference population
and used in conjunction with Monte Carlo methods to
determine the necessary sample size for a targeted
surveillance program. Both SRS and targeted surveillance
samples were then drawn from a second population, which
will be referred to as the sampled population, to estimate
both the prevalence of disease and the probability of
disease detection. Test sensitivity and specificity were
assumed to be 100% to simplify these examples, resulting
in apparent prevalence values equivalent to true pre-
valence values.

Specifically, the prevalence, risk ratio of the character-
istic, and fraction of the population with the characteristic
were obtained for three animal disease scenarios (scrapie
among sheep, Johne’s disease among dairy cattle, and
Neospora caninum among dairy cattle) from National
Animal Health Monitoring Systems (NAHMS) studies
(USDA-APHIS-Veterinary Services). Estimates of the
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most-likely (in this case the mean) value and 95% confidence
intervals for risk ratio were fit to pert distributions using
RiskView (@Risk, Risk Analysis Add-in for Microsoft
Excel, Palisade Corp., Ithaca, NY, 2004). Similarly, estimates
for fraction of the target population were fit to beta
distributions using BetaBuster (Betabuster 1.0, http://
www.epi.ucdavis.edu/diagnostictests/betabuster.html).

Design prevalence levels were assumed to be the
apparent (observed) prevalence of the condition deter-
mined from reference populations. The size of a simple
random sample needed to detect infection in a large
population was

n ¼ lnðaÞ
lnð1� PÞ : (1.1)

This prevalence, P, is the design prevalence, which is a
user-defined threshold that plays a key role in determining
the sample size required to detect the disease. The
sampling error to determine the confidence in detecting
one or more positive animals in a sample from an infected
population (a) was assigned as 0.05.

Targeted sampling calculations were previously
derived (Williams et al., 2009). Briefly, the number of
points per targeted sample (g) was assumed to equal PT/P,
where PT was prevalence in the target subpopulation.
Algebra was used to derive g̃ ¼ RR̃=ð f̃T RR̃þ ð1� f̃TÞÞ
where RR was the risk ratio, fT was the fraction of the
population with the characteristic, and the � symbol
indicated that all quantities were random variables
derived from a specified distribution. To determine the
number of targeted samples (nT), 10,000 instances of

P̃T ¼ g̃P ¼ PRR̃

f̃T RR̃þ ð1� f̃TÞ
(1.2)

were generated from Monte Carlo simulation. Using the
simulated values for PT, the value for nT that solves

P10;000
i¼1 ð1� ð1� P̃Ti

ÞnT Þ
10;000

� 0:95 (1.3)

was determined. The solver utility in Excel was used.
To compare the performance of targeted sampling with

simple random sampling, Monte Carlo simulation was
performed using commercial software (@Risk, Risk Ana-
lysis Add-in for Microsoft Excel, Palisade Corp., Ithaca, NY,
2004) by sampling with replacement for 20,000 iterations.
The outcomes of interest were the mean estimated
prevalence and the standard error (SE) of the estimated
prevalence. Using simple random sampling, the estimated

prevalence estimator was P̂ ¼ s=n and the SE of prevalence

was, SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ=n

q
where s was the number of positive

animals in the sampled population. For targeted sampling,

the estimated prevalence estimator was P̂ ¼ sT=ðgnTÞ and

the SE of prevalence was SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̂ð1� P̂Þ=ðgnTÞ

q
, where sT

was the number of positive animals in the target sample.
The bias ratio was calculated as the difference between

the estimated prevalences using unbiased (simple random
sampling) and biased (targeted sampling) estimators
divided by the standard error of the biased prevalence
estimate. The motivation for using the bias ratio is that this
statistic can be used to assess the acceptable level of bias in
an estimator. Särndal et al. (1992, pp. 164–166) demon-
strate that a bias ratio less than 0.50 is often times
acceptable because the achieved coverage probability of
the confidence interval is not greatly affected by the bias
(i.e., the proportion of samples with 95% confidence
intervals that overlap the true prevalence is still reason-
ably close to 95%). For example, Särndal et al. (1992) show
that when the bias ratio is 0.5, the achieved coverage rate
of a 95% confidence interval is still 92%. For bias ratio
values greater than 0.5, the coverage probabilities corre-
spondingly decrease and the inferences drawn from biased
estimators become progressively less valid.

2.2. Disease scenarios (Table 1)

2.2.1. Scrapie in US sheep

This scenario compares the performance of simple
random and targeted sampling strategies in the case where
a highly representative reference population has been used
to estimate RR and fT prior to the design phase of
surveillance (i.e., the reference population is representa-
tive of the population to be sampled). A national slaughter
study was performed in 2002–2003 to estimate the
prevalence of scrapie histopathological lesions in the US
adult sheep population using immunohistochemistry
(IHC) of the obex, tonsil, and lymph node (USDA-APHIS-
VS, 2004), the standard diagnostic test performed for this
disease in US sheep.

A strong association between black-faced sheep and
occurrence of scrapie has long been assumed (USDA-
APHIS-VS, 2003). For our study, we used a target
population consisting of black-faced sheep. To create a
situation of highly representative input data, the national
study dataset was randomly split into two equal sized
datasets irrespective of face color, thereby providing
reference and sampled populations derived from the same
population. From the reference dataset, estimates of RR, fT,
and P were obtained (USDA-APHIS-VS, 2004). Uncertainty
distributions for RR and fT implied by the estimates from
this dataset were used to derive the targeted sample size.
The prevalence, P, from the reference dataset was then
chosen as the design prevalence for the calculation of the
required sample size necessary for both simple random
sampling (Eq. (1.1)) and targeted sampling (Eq. (1.2)).

In the sampled dataset, the exact values were deter-
mined for the prevalence of scrapie among black-faced
sheep, the fraction of the population that were black-faced,
and the prevalence of scrapie among all sheep in the
population. These population parameters were used in a
simulation study to compare the performance of the
targeted sampling prevalence estimator with the simple
random sampling estimator. Using Monte Carlo methods,
bootstrap sampling was employed to calculate the
estimated value and standard error of prevalence using
both sampling approaches. For example, bootstrap simple
random sampling was accomplished by simulating 20,000
iterations of s̃=n where s̃ is a binomial variable
(s � Binomial(n, P)), n is the simple random sample size
and P is the prevalence of scrapie in the sampled

http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
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Table 1

Data sources and parameter estimates for specific disease situations.

Disease Characteristic Risk ratio (RR)

(95% CI)

Fraction of population with

characteristic (fT) (95% CI)

Prevalence in

target population (PT)

Overall

prevalence (P)

Scrapie in US sheep

Reference population Black face 20.02% (4.49–89.33) 23.06% (22.01–24.12%) – 0.23%

Sampled population Black face 26.75% 21.90% 1.09% 0.27%

Johne’s disease in US dairy cattle

Reference population Watery diarrhea 4.66% (2.60–8.37) 1.86% (1.71–2.01%) – 0.47%

Sampled population Watery diarrhea 2.75% 0.62% 5.08% 1.87%

Neospora caninum in US dairy cattle

Reference population Abortion 2.80% (1.10-6.90) 3.50% (3.30-3.70%) – 1.00%

Sampled population Abortion 4.79% 3.25% 2.47% 0.58%

Sources of information:

Scrapie in US sheep – Reference population: SOSS 2002–2003 Part A. Sample size = 6205. Diagnosis by IHC of obex, tonsil, or lymph node; and Sampled

population: SOSS 2002–2003 Part B. Sample size = 6211. Diagnosis by IHC of obex, tonsil, or lymph node.

Johne’s disease in US dairy cattle – Reference population: NAHMS 1996. Sample size = 31,345. Diagnosis by serum ELISA with cutpoint OD�0.35 above mean

negative control OD; and Sampled population: NAHMS 2002. Sample size = 11,151. Diagnosis by serum ELISA with cutpoint OD�0.35 above mean negative

control OD.

Neospora caninum in US dairy cattle – Reference population: Hernandez et al. (2002) for RR estimate. Sample size = 460. USDA-APHIS-VS (1996), Part I:

Reference of 1996 Dairy Management Practices for fT; and Sampled population: NAHMS 1996. Sample size = 7224. Diagnosis in 2nd lactation dairy cattle by

serum ELISA with cutpoint OD �1.2 � high positive control.
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population. The estimated value and standard deviation of
s̃=n across the 20,000 iterations approximates the esti-
mated prevalence from simple random sample and its
standard error. For targeted sampling, a similar procedure
is followed but in this case 20,000 iterations of s̃T=g̃nT are
simulated where sT � Binomial(nT, PT), nT is the targeted
sample size, PT is the prevalence of scrapie among black-
faced sheep in the sampled population and g̃ is a random
variable whose distribution is predicted by RR̃=ð f̃T RR̃þ
ð1� f̃TÞÞ:

The estimated prevalence and its standard error are
calculated as described for simple random sampling.

2.2.2. Johne’s disease (Mycobacterium avium subsp.

paratuberculosis) in US dairy cattle

This scenario compared the performance of targeted
sampling and simple random sampling in the case where
estimates of RR and fT used to design surveillance are
generated from a reference population that may not be
highly representative of the current population. The
reference dataset was collected in 1996 where a national
study of 967 nonvaccinated dairy herds resulted in the
testing of 31,745 cows for Johne’s disease (USDA-APHIS-
VS, 1997). Testing was performed using a serum ELISA
(IDEXX, Portland, ME) at the National Veterinary Services
Laboratory (NVSL), Ames, IA. Weighted results from this
study, using the commercial test kit label cutpoint (0.10
above the mean negative control OD), showed an apparent
cow prevalence of 2.5%, with variation observed by herd
size, region, and fecal consistency score. To artificially
create a sampled population with a lower disease
prevalence that is more typical of situations of interest
to national animal health officials, we increased the
cutpoint of the test to 0.35 above the mean negative
control OD, thereby reducing the apparent prevalence of
infected cattle in the sample to approximately 0.5%.
The characteristic was watery diarrhea as noted by the
veterinarian while collecting blood samples from the cattle
on the farm. These reference data were used to estimate RR,
P and fT, for use in the design phase of this study. The
uncertainties about RR and fT implied by the estimates
from this dataset were used in the derivation of the
targeted sample size. The observed value for P in the
reference dataset was assumed to apply for the purposes of
designing a simple random sampling strategy as well as a
targeted sampling strategy.

To compare targeted sampling with simple random
sampling, results from the NAHMS Dairy 2002 Study
(USDA-APHIS-VS, 2005) were used were used to construct
the sampled population. In this study, NAHMS also
estimated the prevalence of antibody to M. paratuberculosis

in dairy cows with the same diagnostic test (though
marketed at this time by a different company in the US)
performed at the same laboratory, though with a different
study design. For our study, we used the same high
cutpoint for the serum ELISA to classify cows by M.

paratuberculosis infection status.

2.2.3. N. caninum in US dairy cattle

This scenario compared the performance of targeted
sampling and simple random sampling in the case where
estimates of RR and fT used to design surveillance are
generated from published, but geographically limited
research that is not necessarily representative of the
larger population (i.e., the reference population is not
representative of the sampled population). The character-
istic used to create a target subpopulation was prior
history of abortion. For the design phase of our study, an
estimate of RR for antibody to N. caninum due to abortion
was obtained from a published study based on a single
dairy herd in Florida (Hernandez et al., 2002), to simulate a
situation with minimal available scientific evidence from
which to design targeted surveillance. To create the
sampled population, only second lactation cows were
included in the dataset, as these animals were found to
have increased risk of abortion related to N. caninum

antibody in the published report. An estimate of fT was
obtained from the NAHMS Dairy 1996 Study (USDA-



Table 3

Bootstrap sampling results from second populations for specific animal

diseases.

Statistic Simple random

sampling

Targeted

sampling

Scrapie

Sample size 1496 405

Samples as proportion of

simple random sample

100% 27%

Probability of detecting one

or more positive samples

98.3% 98.8%

Estimated prevalence, P̂ 0.27% 0.29%

Standard error of P̂ 0.13% 0.15%

Bias ratio – 0.15

Johne’s disease

Sample size 598 140

Samples as proportion of

simple random sample

100% 23%

Probability of detecting one

or more positive samples

100.0% 99.9%

Estimated prevalence, P̂ 1.87% 1.15%

Standard error of P̂ 0.55% 0.56%

Bias ratio – 1.27

Neospora caninum

Sample size 298 122

Samples as proportion of simple

random sample

100% 41%

Probability of detecting one

or more positive samples

82.3% 95.3%

Estimated prevalence, P̂ 0.58% 0.94%

Standard error of P̂ 0.44% 0.76%

Bias ratio – 0.47
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APHIS-VS, 1996) as collected from producers in a retro-
spective herd-level questionnaire. The design prevalence
was set at 1%.

To compare targeted sampling with simple random
sampling, we used data from second lactation cows from
the NAHMS Dairy 1996 Study, in which serum from over
30,000 cows in nearly 1000 herds was tested by NVSL in
Ames, IA using an NVSL-produced ELISA to detect antibody
to N. caninum. For this study, the cutpoint for the serum
ELISA was set at an OD greater than or equal to 120% of the
high positive control OD value, again to ensure low
prevalence within the sample. Cattle selected for sampling
had a history of aborting in the preceding 12 months at 3 or
more months of gestation.

3. Results

3.1. Scrapie

The simple random sample size to detect at least one
positive sheep with 95% confidence at 0.2% prevalence was
1496. The targeted sampling sample size based on most-
likely values for RR and fT (i.e., 20.02 and 23%) was 377, based
on 3.72 points per targeted sample (Table 2). The derived
targeted sample size was inflated to 405 after accounting for
uncertainty in RR and fT, with the mean points per targeted
sample of 3.79 with 95% confidence interval from 2.49 to
4.26. These sample sizes were intended to detect one or
more positive samples if the prevalence was 0.2% or greater.
In the sampled population, 1.09% of the target population
was scrapie-positive compared to 0.04% of the nontarget
population, for an overall prevalence of 0.27%.

The required number of targeted samples was just 27%
of the number of simple random samples (Table 3). Despite
fewer samples, targeted sampling detected one or more
positive samples slightly more often than simple random
sampling (i.e., 98.8% vs. 98.3%, Table 3). The distributions of
estimated prevalence for each sampling method (Fig. 1)
were very similar. The standard error of estimated
prevalence for simple random sampling was slightly less
than that for targeted sampling and the bias ratio was 0.15.

3.2. Johne’s disease

The sample size for simple random sampling in this
situation was 598 (Table 2). The targeted sample size based
on most-likely (i.e., fixed) values for RR and fT (i.e., 4.66 and
Table 2

Inputs and calculations necessary to derive simple random and targeted samp

Model value Symbol Formula

Fraction of population in target group fT

Risk ratio RR PT/Po

Design prevalence P fTPT + (1 � fT)Po

Prevalence in targeted group* PT RR � Po

Prevalence in non-targeted group* Po P/[fT(RR � 1) + 1]

Sampling error a
Number of simple random samples n ln(a)/ln(1 � P)

Points per targeted sample* g PT/P

Number targeted samples (no uncertainty) n/g
Number of targeted samples (uncertainty) nT n/g

* Estimated value using best estimates for other parameters.
1.86%) was 125. The derived targeted sample size was
inflated to 140 after accounting for uncertainty in RR and fT,
with mean points per targeted sample of 4.76 with 95%
confidence interval from 2.53 to 7.36. These sample sizes
were intended to detect one or more positive samples if the
prevalence was 0.5% or greater. In the sampled population,
5.08% of the target population was Johne’s disease-positive
compared to 1.85% of the nontarget population, for an
overall prevalence of 1.87%.

The required number of targeted samples represented
23% of the number of simple random samples (Table 3).
Despite fewer samples, targeted sampling detected one or
more positive samples at nearly the same frequency as
simple random sampling. However, the estimate of
prevalence from targeted sampling was biased downward
from 1.87 to 1.15%. Furthermore, the distributions of
estimated prevalence differed (Fig. 2) and the bias ratio
le sizes based on input data.

Scrapie Johne’s disease Neospora

Beta(1445, 4818) Beta(627, 33029) Beta(1199, 33042)

Pert(1, 20, 139) Pert(1.97, 4.66, 10.40) Pert(0.65, 2.8, 9.41)

0.20% 0.50% 1.0%

0.74% 2.18% 2.63%

0.04% 0.47% 0.94%

0.05 0.05 0.05

1496 598 298

3.72 4.36 2.63

377 125 113

405 140 122



Fig. 1. Distribution of estimated prevalence of scrapie in US sheep

population based on targeted sampling compared to simple random

sampling.

Fig. 3. Distribution of estimated prevalence of antibody to Neospora

caninum based on targeted sampling compared to simple random

sampling.
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was 1.27, which greatly exceeds the generally accepted
limit of 0.5 and indicates that confidence intervals are
unlikely to contain the true prevalence value.

3.3. N. caninum

The sample size for simple random sampling in this
situation was 298 (Table 2). The targeted sample size based
on most-likely values for RR and fT (i.e., 2.8 and 3.5%) was
113. The derived targeted sample size was inflated to 122
after accounting for uncertainty in RR and fT using Monte
Carlo methods (Eq. (1.3)), with mean points per targeted
sample of 3.19 with 95% confidence interval from 1.10 to
5.72. These sample sizes were intended to detect one or
more positive samples if the prevalence was 1.0% or
greater. The true characteristics of the sampled population
were as follows: 2.47% of the target population were
Neospora-positive compared to 0.52% of the nontarget
population, for an overall prevalence of 0.58%.

The required number of targeted samples represented
41% of the number of simple random samples (Table 3).
Despite fewer samples, targeted sampling had a higher
probability of detecting one or more positive samples
compared to simple random sampling. The targeted
sampling estimate of prevalence was biased upward from
0.58 to 0.94% though the distributions of estimated
prevalence for each method were relatively similar
Fig. 2. Distribution of estimated prevalence of antibody to M.

paratuberculosis (Johne’s disease) based on targeted sampling

compared to simple random sampling.
(Fig. 3). The bias ratio was 0.47, which we consider an
acceptable level.

4. Discussion

This report’s objective was to evaluate the performance
of targeted sampling using specific examples. These
examples were based on actual data generated from
epidemiologic studies and therefore incorporated epide-
miologic uncertainties that are common when planning,
implementing, and analyzing surveillance data. In the
animal disease scenarios selected, we knew the true
population characteristics of the populations sampled but,
in reality, we would never know these characteristics. Given
these true characteristics, we compared the performance of
targeted sampling to simple random sampling.

In the scrapie example, if we sampled a population with
0.20% prevalence, then both simple random and targeted
sampling would have equivalent probabilities of detecting
one or more positive samples because that was how
sample sizes were derived (i.e., both simple random and
targeted sample sizes were determined to be 95% confident
in detecting one or more positive samples if prevalence is
0.20%). Relative to the true prevalence in the population,
simple random sampling was unbiased but targeted
sampling is biased slightly upwards. This result is
predicted for targeted sampling when based on uncertain
RR and fT. Nevertheless, the bias is small relative to
inferences about prevalence of scrapie in the population.
The similar standard errors generated from each sampling
design are also consistent with theory. Despite the
uncertainty about RR in the reference population of the
scrapie study, little bias or loss in statistical precision
occurred by using targeted sampling in this example.
Concern about these deviations from the performance of
simple random sampling should be placed in context with
the substantial reduction in samples needed to accomplish
targeted sampling in this example. These results support
the contention that there is very little difference in the
performance of targeted sampling relative to simple
random sampling when highly representative and valid
estimates of RR and fT are available for use during the study
design phase.
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In the Johne’s disease scenario, the failure of targeted
sampling to outperform simple random sampling is the
result of overestimates of RR and fT from the study of the
reference population relative to the sampled population.
Relative to the true prevalence in the sampled population,
simple random sampling was unbiased but targeted
sampling was biased downwards. In contrast to the scrapie
example, where sampling was from essentially the same
population, sampling in this Johne’s disease example was
designed based on results from one population with
sampling performance evaluated in a different population
at a later time period. In this case, the second population’s
true RR and fT with diarrhea were less than the central
tendencies of RR and fT in the first population that was used
to design the sample plan. Consequently, the number of
points per targeted sample estimated from the reference
population was, on average, larger than the true points per
sample in the sampled population. Larger numbers of
points per sample implied a larger denominator in the
estimator for targeted sampling, so the estimated pre-
valence in the sampled population (1.15%) was less than
the true prevalence (1.87%).

The standard error for simple random sampling

is unbiased (e.g., SEð p̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð p̂ð1� p̂ÞÞ=n

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1:86%� 98:14%Þ=598
p

¼ 0:55%) and slightly less than

that for targeted sampling. The uncertainty in RR and fT

slightly inflated the standard error for targeted sampling.
The biased estimator of prevalence for targeted sampling
illustrated what can happen when the model used to
design a sampling plan is not consistent with the sampled
population. Nevertheless, the bias in this Johne’s disease
situation was not particularly concerning; although the
proportional magnitude of bias is �38% ((1.16% � 1.86%)/
1.86%), this only underestimated true prevalence by 0.70%.
This level of bias might be more significant in other
situations.

The confidence level of detection and prevalence
estimates in this Johne’s disease example illustrated an
important consideration for targeted sampling. Unless
there is very strong justification for assuming the sampled
population is similar to the population(s) used to estimate
RR and fT, then the uncertainty for these parameters should
be modeled using uninformed distributions. In this
example, if we had assumed wider distributions for RR

and fT, then a larger targeted sample would have been
derived. Furthermore, if the uncertainty distributions for
RR and fT were less informed, it is possible that the
designed targeted sample could perform similarly to the
simple random sample. For example, if we assumed RR and
fT were distributed RR � Uniform(1, 10) and fT � Uni-

Uniform(0.005, 0.05), then the targeted sample size would
have been 189 (still just 32% of the simple random sample
size) and the confidence in detection is similar for targeted
sampling compared to simple random sampling (e.g., 100%
vs. 99.99%). In this case, the mean points per targeted
sample were 4.79 with expanded confidence interval from
1.22 to 8.40. Furthermore, the targeted sampling estimate
for prevalence is 1.40% with a larger standard error (e.g.,
1.04%); this estimate remains biased (bias ratio = 0.45) but
the magnitude of the bias was reduced by including more
uncertainty about RR and fT during the initial planning
stage.

In the N. caninum scenario, RR was obtained from a
nonrepresentative reference population, with different
diagnostic tests used including different cutpoints for
determining positivity. Despite these differences, targeted
surveillance performed relatively well. With 41% of the
simple random sample size, the targeted sample was more
likely to detect one or more positive samples (95%
compared to 82%), though it overestimated the population
prevalence (0.94% compared to 0.58%). In this case, the RR

from the reference population underestimated RR in the
sampled population, leading to lower points per targeted
sample which deflated the denominator, resulting in an
inflated prevalence. This indicates the potential for
distortion of estimators even with relatively low bias
ratios.

All the examples demonstrate that increasing uncer-
tainties about RR and fT cause the targeted sample size to
increase, but the improvement in estimation from includ-
ing more uncertainty seems to more than balance the
increase in sample size for the Johne’s scenario. It should be
noted, however, that stretching uncertainty about RR to
values below 1 could dramatically increase the targeted
sample size. Nevertheless, if RR can plausibly be less than 1,
then the appropriateness of the proposed characteristic
should be questioned; a characteristic with a risk ratio of
one does not constitute a justification of using targeted
sampling.

Ultimately, increasing uncertainties about RR and fT

may translate into values of nT that are nearly equivalent to
the simple random sample size. In such cases, the
statistical and technical complexities of targeted surveil-
lance suggest it is not preferred to a simple random
sample. This is especially true if the marginal cost of
conducting targeted sampling is greater than this cost for
simple random sampling. Furthermore, the marginal cost
of targeted sampling may increase with increasing samples
(e.g., as the pool of potential targeted samples becomes
more difficult to identify) and the economic advantage of
targeted sampling may dissipate in such cases. As with any
surveillance planning, the economics of sampling is an
important factor in ultimately deciding which strategy to
employ.

The scenarios in this report ignore the effects of
sensitivity and specificity on the processes of designing
and analyzing targeted surveillance. Formal incorporation
of these parameters and their uncertainty into these
processes is a next step in the development of targeted
surveillance. Similarly, these methods can be extended to
multiple targeted subpopulations, but the mathematics
are more complex.

5. Conclusion

In summary, targeted surveillance may be appropriate
for many animal health surveillance activities. This
approach to surveillance is highly appropriate when one
has representative and justifiable estimates of key
epidemiologic parameters. If one is less certain of the
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epidemiologic parameters RR and fT, however, a rational
decision is to reflect this uncertainty across the full range
of plausible values. Although this uncertainty necessarily
inflates the targeted sample size, it is expected to improve
the validity of estimates made from targeted surveillance.
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